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1. Introduction 2. The DCCRN model

□ Noisy speech can be enhanced by neural networks either time-frequency(TF) domain or directrly in time-

domain.

□ Time-domain approachs

‒ Direct regression: 1-D conv without an explicit signal front-end

‒ Adaptive front-end approach: convolution encoder-decoder(CED) or u-net taking time-domain signal in 

and out with STFT and iSTFT. The enhancement network is inserted between the CED.

□ TF-domain approachs

‒ Work on the spectrogram with the belief that fine-detailed structures of speech and noise can be 

separable with TF representations after STFT.

□ Convolution recurrent network(CRN) is recent approach that also employs a CED structure similar to the one 

in the time-domain approaches but extracts high-level features for better separation by 2-D CNN from noisy 

speech spectrogram.

□ A complex-valued spectrogram can be decomposed into magnitude and phase in polar coordinate or real and 

imaginary part in Cartesian coordinate
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1. Introduction 2. The DCCRN model

□ Early studies only focus on magnitude so, there exists the upper bound of performance. Also, the neural 

network remains real-valued.

□ Training targets defined in the TF domain mainly fall into two groups of targets.

‒ masking-based targets: masks describe the time-frequency relationships between clean speech and 

background noise

‒ Mapping based targets correspond to the spectral representations of clean speech.

□ Ideal binary mask(IBM), ideal ratio mask(IRM), spectral magnitude mask(SMM) use magnitude only.

□ Phase-sensitive mask(PSM), complex ratio mask(CRM) uses both of magnitude and phase or real and 

imaginary values

□ A CRN with one encoder and two decoders for complex spectral mapping(CSM) is proposed. [24]

□ CRM(complex ratio mask) and CSM(complex spectral mapping) possess the full information of the speech 

signal.
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1. Introduction 2. The DCCRN model

□ Deep complex u-net has combined the advantages of both a deep complex network and a u-net to deal with 

complex-valued spectrogram.

□ DCUNET is trained to estimate CRM and optimize the scale-invariant source-to-noise ratio(SI-SNR) loss.

□ SI-SNR loss is calculated by transforming the output TF-domain spectrogram to a time-domain waveform by 

iSTFT.



Contributions

0hoo

1. Introduction 2. The DCCRN model

□ The deep complex convolution recurrent network(DCCRN) is created by combining the advantages of 

DCUNET and CRN, using LSTM to model temporal context.

□ DCCRN optimizes an SI-SNR loss.

□ Various training targets are tested under DCCRN framework and the best performance can be obtained by 

the complex network with the complex target.

□ DCCRN outperforms CRN by a large margin and achieves competitive performance with DCUNET with 1/6 

computation complexivity.

□ With only 3.7M parameters, DCCRN achieves the best MOS in real-time track and the second-best in non-

real time track according to the P.808 subjective evaluation in the DNS challenge.
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1. Introduction 2. The DCCRN model 3. Experiments

□ The convolution recurrent network(CRN) [14] is an essentially causal CED architecture with two LSTM layers 

between the encoder and decoder.

‒ The encoder consists of five Conv2d block aiming extracting high-level features from the input features, 

or reducing the resolution.

‒ The decoder reconstructs the low-resolution features to the original size of input.

‒ The CED is composed of convolution/deconvolution layer followed by batch normalization and activation 

function in a symmetric design.

‒ The LSTM is specifically used to model the temporal dependencies.

□ The complex spectral mapping [24] does not model only magnitude but the real and imaginary parts of 

complex STFT spectrogram from the input mixture to the clean speech with one encoder and two decoders.

□ However, it treats real and imaginary parts as two input channels

‒ It only applies real-valued convolution operation with one shared real-valued convolution filter.
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1. Introduction 2. The DCCRN model 3. Experiments

□ DCCRN  modifies CRN substantially with complex CNN and complex BN in CED and complex LSTM with the 

prior knowledge of complex multiplication. This models the correlation between magnitude and phase.

DCCRN network
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1. Introduction 2. The DCCRN model 3. Experiments

□ The complex encoder block includes complex Conv2d, complex batch normalization [26] and real-valued 

PReLU [28].

‒ Complex Conv2d block is from the one in DCUNET [25] and consists of four traditional Conv2d operation.
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□ The complex-valued convolutional filter 𝑊 is defined as 𝑊 = 𝑊௥ + 𝑗𝑊௜ where the real-valued matrics 𝑊௥ and 

𝑊௜ represent the real and imaginary part of complex convolution kernel, respectively.

□ The complex output 𝑌 from the complex convolution operation 𝑋 ⊛ 𝑊 with the input matrics 𝑋 = 𝑋௥ + 𝑗𝑋௜:

𝐹௢௨௧ = 𝑋௥ ∗ 𝑊௥ − 𝑋௜ ∗ 𝑊௜ + 𝑗(𝑋௥ ∗ 𝑊௜ + 𝑋௜ ∗ 𝑊௥)

□ 𝐹௢௨௧ denotes the output feature of one convolution layer.

□ The complex output of complex LSTM with the complex input 𝑋௥ and 𝑋௜ can be defined as:

𝐹௥௥ = LSTM௥ 𝑋௥ ;   𝐹௜௥ = LSTM௜ 𝑋௥

𝐹௥௜ = LSTM௜ 𝑋௥ ;    𝐹௜௜ = LSTM௜ 𝑋௜

𝐹௢௨௧ = 𝐹௥௥ − 𝐹௜௜ + 𝑗(𝐹௥௜ + 𝐹௜௥)
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1. Introduction 2. The DCCRN model 3. Experiments

□ DCCRN estimates complex ratio mask(CRM) and is optimized by signal approximation(SA).

□ Given the complex-valued STFT spectrogram of clean speech 𝑆 and noisy speech 𝑌, CRM can be defined as:

CRM =
𝑌௥𝑆௥ + 𝑌௜𝑆௜

𝑌௥
ଶ + 𝑌௜

ଶ + 𝑗
𝑌௥𝑆௜ − 𝑌௜𝑆௥

𝑌௥
ଶ + 𝑌௜

ଶ

□ For comparison, magnitude target(SMM) can be considered. (SMM = |𝑆|/|𝑌|)

□ Singal approximation(SA) directly minimizes the difference between magnitude or complex spectrogram of 

clean speech and that of noisy speech applied with mask.

□ CRM-based SA: CSA = 𝐿𝑜𝑠𝑠(𝑀෩ ⋅ 𝑌, 𝑆)

□ SMM-based SA: 𝑀𝑆𝐴 = 𝐿𝑜𝑠𝑠( 𝑀෩ ⋅ 𝑌 , 𝑆 ))

□ The Cartesian coordinate representation of mask 𝑀෩ = 𝑀௥
෪ + 𝑗𝑀௜

෪ can also be expressed in polar coordinates:

𝑀෩୫ୟ୥ = 𝑀෩௥
ଶ + 𝑀෩௜

ଶ 

𝑀෩୮୦ୟୱୣ = arctan2(𝑀෩௜, 𝑀෩௥)
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□ Three multiplicative patterns for DCCRN are proposed like below:

DCCRN − R: 𝑆ሚ = 𝑌௥ ⋅ 𝑀෩௥ + 𝑗 𝑌௜ ⋅ 𝑀෩௜

DCCRN − C: 𝑆ሚ = 𝑌௥ ⋅ 𝑀෩௥ − 𝑌௜ ⋅ 𝑀෩௜ + 𝑗 𝑌௥ ⋅ 𝑀෩௜ + 𝑌௜ ⋅ 𝑀෩௥

DCCRN − E: 𝑆ሚ = 𝑌୫ୟ୥ ⋅ 𝑀෩୫ୟ୥ ⋅ 𝑒௒౦౞౗౩౛ାெ෩౦౞౗౩౛

□ DCCRN-R estimates the mask of the real and imaginary parts of 𝑌෨ , respectively.

□ DCCRN-C obtains 𝑆ሚ in the manner of CSA.

𝑆ሚ = 𝑌௥ ⋅ 𝑀෩௥ − 𝑌௜ ⋅ 𝑀෩௜ + 𝑗 𝑌௥ ⋅ 𝑀෩௜ + 𝑌௜ ⋅ 𝑀෩௥

= 𝑌௥ ⋅
𝑌௥𝑆௥ + 𝑌௜𝑆௜

𝑌௥
ଶ + 𝑌௜

ଶ − 𝑌௜ ⋅
𝑌௥𝑆௜ − 𝑌௜𝑆௥

𝑌௥
ଶ + 𝑌௜

ଶ + 𝑗 𝑌௥ ⋅
𝑌௥𝑆௜ − 𝑌௜𝑆௥

𝑌௥
ଶ + 𝑌௜

ଶ + 𝑌௜ ⋅
𝑌௥𝑆௥ + 𝑌௜𝑆௜

𝑌௥
ଶ + 𝑌௜

ଶ

= 𝑆௥ + 𝑗𝑆௜

□ DCCRN-E is mathematically similar to DCCRN-C but the only difference is that it uses 𝑡𝑎𝑛ℎ activation function 

to limit the mask magnitude to 0 to 1.
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1. Introduction 2. The DCCRN model 3. Experiments

□ The loss function of model training is SI-SNR. It is defined as:

𝒔୲ୟ୰୥ୣ୲ ≔ (< 𝒔෤, 𝒔 >⋅ 𝒔)/||𝒔||𝟐
𝟐

𝒆୬୭୧ୱୣ ≔ 𝒔෤ − 𝒔୲ୟ୰୥ୣ୲

SI − SNR ≔ 10log10(
||𝒔୲ୟ୰୥ୣ୲||ଶ

ଶ

||𝒆୬୭୧ୱୣ||ଶ
ଶ )

□ <⋅,⋅> denotes the dot product between two vectors and || ⋅ ||ଶ is Euclidean norm(L2 norm).
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2. The DCCRN model 3. Experiments 4. Conclusions

□ The first datasets: WSJ0 [30] for speech and MUSAN [31] for noise

‒ 20K, 3K, and 1.5K utterances for train, validation, evaluation is selected from WSJ0.

‒ There exists 131 speakers (66 males and 65 females).

‒ MUSAN os 42.6 hours music for training and validation and 7 hours for evaluation.

‒ The speech-noise mixture in training and validation is generated by randomly selecting utterances.

‒ The mixing SNR is randomly selected between -5 dB and 20 dB.

‒ The evaluation set is gernerated at 5 typical SNRs (0 dB, 5 dB, 10 dB, 15 dB, 20 dB).

□ The second datasets: DNS for speech and noise

‒ 180 hours DNS challenge noise set includes 150 classes and 65,000 noise clips.

‒ Clean speech set includes over 500 hours of clip from 2,150 speakers.

‒ The speech-noise mixture is mixed with dynamic mixing during model training.

‒ At each training epoch, speech and noise are rst convolved with a room impulse response(RIR) 

randomly-selected from a simulated 3000-RIR set by the image method [32]

‒ The speech-noise mixtures are generated dynamically by mixing reverb speech and noise at random 

SNR between -5 dB and 20 dB.
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2. The DCCRN model 3. Experiments 4. Conclusions

□ The window length and hop size are 25 ms and 6.25 ms, and FFT length is 512.

□ The optimizer is Adam.

□ The initial learning rate is set to 0.001, and it will decay 0.5 when the validation loss goes up.

□ All the waveforms are resampled at 16 kHz.

□ The models are selected by early stopping.

□ The experiments are processed with LSTM, CRN, DCCRN, and DCUNET. 

□ The four target patterns of DCCRN are also used (DCCRN-R, DCCRN-C, DCCRN-E, DCCRN-CL).

□ The number of channel for the first three DCCRN is {32,64,128,128,256,256} and one of the last one is 

{32,64,128,256,256,256}.

□ The kernel size and stride are set to (5,2) and (2,1) respectively.

□ The real LSTMs of the first three DCCRN are two layers with 256 units and DCCRN-CL uses complex LSTM 

with 128 units for the real part and imaginary part, respectively.

□ A dense layer with 1024 units is after the last LSTM.
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2. The DCCRN model 3. Experiments 4. Conclusions

□ Semi-causal convolution has only two differences with commonly used causal convolution in practice.

‒ Zeros are padded in front of the time dimension at each Conv2ds in the encoder.

‒ For decoder, one frame is looked ahead in each convolution layer.

‒ This eventually leads to 6 frames look-ahead, totally 6 × 6.25 = 37.5 ms, confined with the DNS 

challenge limit – 40ms
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2. The DCCRN model 3. Experiments 4. Conclusions

□ The model performance is first accessed by PESQ on the simulated WSJ0 dataset.

□ DCCRN-CL achieves better performance than other DCCRNs. Complex LSTM is also beneficial to complex 

target training.

□ The full-complex-value network DCCRN and DCUNET are similar in PESQ but computational complexity of 

DCUNET is almost 6 times than that of DCCRN-CL according to our run-time test.
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2. The DCCRN model 3. Experiments 4. Conclusions

□ In the DNS chanllenge, the two best DCCRN models and DCUNET with the DNS dataset are evaluated.

□ DCCRN-CL achieves a little bit better PESQ than DCCRN-E in general.

□ But, after internal subject listening, DCCRN-CL may over-suppress the speech signal on some clips.

□ DCUNET obtains relatively good PESQ on synthetic non-reverb set, but its PESQ will drop significantly on the 

synthetic reverb set.

□ Subjective listening is very critical when the objective scores are close for different systems so, DCCRN-E 

was finally chosen for the real-time track.

□ DCCRN-E-Aug is the model which improves the performance on the reverb set.
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2. The DCCRN model 3. Experiments 4. Conclusions

□ The final P.808 subjective evaluation results for several top systems in both track.

□ The MOS of DCCRN-E-Aug has a small improvement of 0.02 on the reverb set.

□ DCCRN-E achieves an average MOS of 3.42 on all sets and 4.00 on the non-reverb set.
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3. Experiments 4. Conclusions

□ The DCCRN model utilizes a complex network for complex-valued spectrum modeling.

□ With the complex multiply rule constraint, DCCRN can achieve better performance than others in terms of 

PESQ and MOS in the similar configuration of model parameters.

□ In the future, DCCRN in low computational scenarios will be tried and DCCRN improved noise suppression 

ability in reverberation conditions also can be tried.
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